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Abstract—Filled rubber material is used in many technical applications. These structures are
often subjected to dynamic loading. Apart from the material’s stiffness characteristics dissipative
properties are of great importance. At high frequencies rubber material behaves mainly visco-
elastically. But at low strain-rate the response is nearly rate-independent. This observation can be
interpreted as “internal material friction” and is dealt with in the following article. A constitutive
approach is presented, which can be motivated by investigations on the molecular level. This
phenornenological description is composed of an elastic model—idealized as an elastic spring--and
elasto-plastic Prandtl-elements in parallel. The formulation is derived for small and finite strains.
The large strain case is based on a muitiplicative decomposition of the deformation gradient.
Experimental results and numerical simulations are presented utilizing a mixed finite element
formulation to give a robust algorithm and reliable results. € 1998 Elsevier Science Ltd.

1. INTRODUCTION

In the present study we look into a type of rubber material which is employed in a wide
range of technical applications. These elastomers are the essential component of e.g. tyres,
pneumatic springs or rail brakes. The mentioned class of structures have in common that
they are subjected to large deformations as well as to dynamic loading. Therefore, an
appropriate constitutive approach has to account for dissipative characteristics and large
extensibility of the material.

The principal constituents of the elastomers investigated here are natural and artificial
caoutchouc. Long and highly elastic molecules are linked together by the vulcanization
process using for example sulfur to form a molecular network. Generally, rubber is modified
by filler particles such as carbon-black or silicate to strengthen the mechanical behaviour
and to dilute the material in order to reduce costs.

Considering the described class of filled elastomers, a number of typical properties are
observed. There is large elastic extensibility with its typical S-shaped load-deflection curve.
Moreover, a stiffness reduction is observed during first loading cycles, which converges
finally to a stationary situation. This softening, i.c. the so-called Mullins-¢ffect (see Mullins,
1969), results in strain-induced damage mechanisms on the micro-level. Rate-dependent
and rate-independent material characteristics are of great importance for stiffness and
damping of the oscillations. While several approaches have been proposed to explain most
of the mentioned effects, only few publications deal with the rate-independent response.
The main concern of this study is the modelling of internal material friction of rubber which
can be determined in a quasi-static experiment. Subsequently, the proposed method can
easily and consistently be combined with a viscoelastic approach in order to give a realistic
material model for a large range of applications.

Recent results concerning time-independent internal material {riction of filler modified
rubber are given for example by Benner and Platt (1986), Orschall (1990), Lambertz
(1993) and Jacob (1995). Generally, these publications have in common that a constitutive
empirical function is taken to define the stresses resulting in a static amplitude-dependent
hysteresis when a specimen is subjected to cyclic loading. Only a few of the investigations
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Fig. 1. Micro-structure of a filled polymer network (according to Strauss, 1992).

devgo, /2 devo, >devg, >devy;

5,0 8,0 &

Fig. 2. Generalized Prandtl-model.

(e.g. Orschall, 1990; Jacob, 1995) extend their approach so far that it can be used in a
general context like numerical simulations using the finite element method.

Time-independent hysteresis loops obtained when looking into elastomeric material in
quasi-static cyclic experiments are reported in the cited literature. All observations agree
that even a change in the magnitude of experimental velocity in path-controlied tests does
not influence the result significantly. Therefore, it has to be concluded that a viscoelastic
model is not adequate to represent the material’s response under quasi-static conditions
even though both—internal friction and viscoelasticity—-contribute to a fast process.

The main idea of the following sections is the introduction of a phenomenological
constitutive approach based on linear as well as on finite elastoplasticity suitable for the
modelling of internal material friction (Section 3). The proposed generalized Prandtl-
element (see Fig. 2) is formulated analogously to the generalized viscoelastic Maxwell-
element and, therefore, it is suitable to be used for a consistent coupling of both constitutive
contributions. This type of generalized elastoplasticity is motivated in the next section by
micromechanical considerations (Section 2). Comments on the determination of the
material parameters are given (Section 4). Finally, the model is employed in combination
with finite element simulations (Section 5) to illustrate the considerations presented in this

paper.

2. MICROMECHANICAL MOTIVATION

The idea of the phenomenological model to characterize rate-independent dissipative
behaviour and amplitude-dependent stiffness properties of polymers proposed in this work
originates in investigations of Strauss (1992). He explains molecular relations with respect
to the mentioned phenomena from the point of view of polymer physics.
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Fillers such as carbon-black or silicate are included in polymer networks in order to
improve mechanical properties and to reduce material costs. Interactions between filler
particles and contacts between network chains and filler particles, which are based on
adhesion, are studied by Strauss on the molecular scale. He presents research founding on
the molecular slippage model of Dannenberg (1975).

Filler particles are linked together by a large number of polymer chains with different
chain lengths (Fig. 1). At a certain state of deformation the critical stretch of a chain A, is
reached. If the deformation is increased beyond A, the end of this polymer molecule starts
an irreversible slipping process on the filler surface. Due to the fact that polymer molecules
have different chain lengths, the onset of sliding is found at different macroscopic states of
deformation. Additionally, filler particles are deformed plastically when the elastic limit is
exceeded and the filler-filler contact is also subjected to plastic slipping.

Strauss describes the different types of forces acting between the particles and derives
quantitative expressions characterizing the plastic deformation process. These con-
siderations are confirmed by experiments. Since his costly physical model is established on
the micro-scale it is not suitable for numerical simulations of entire structures. But the
results of Strauss motivate the introduction of the generalized Prandtl-model (Fig. 2) and
its application to rubber material.

The constitutive approach derived here is represented symbolically by arranging a
finite number of elastoplastic Prandtl-elements in parallel with an elastic spring. The
frictional material elements have ideal-plastic characteristics. Choosing different yield limits
results in a formulation which is capable of simulating the described plastic slip process at
different macroscopic strain levels as well as the plastic deformation of the filler particles.

Consider an uniaxial extension test, on the molecular level the number of plastic
slipping processes is a function of the macroscopic state of deformation. The plastic part
of the response is increasing with an increasing deformation. Generally, this relation is
nonlinear. The mentioned characteristics are found for the generalized Prandtl-element
using ideal plasticity. Here, stiffness is reduced in a nonlinear way depending on the
deformation and the response is elastic again for unloading conditions.

3. CONSTITUTIVE MODEL

Analogously to the generalized Maxwell-model a finite number of Prandtl-elements,
each consisting of an elastic spring and a rigid-plastic slider, are arranged in parallel (Fig.
2). This way the generalized formulation has an additive structure for small and even for
large strains. Different elastoplastic parameters are associated with these symbolic elements.
The underlying basic elastic stiffness is represented by the separate spring. The discrete
formulation of these symbolic elements results in a material approach which comprises
rate-independent and amplitude-dependent stiffness and damping properties.

The basic ideas go back to Masing (1926/1927) who modelled amplitude-depending
damping phenomena in the 1920s. Later, Iwan (1967) pursued related methods by arranging
elastoplastic elements in parallel and in series for the small strain case. In recent publications
of Stein ef al. (1992, 1993) a discrete overlay-model similar to the proposed type is used in
combination with shake-down simulations in a geometrically linear context.

Since a reduction of stiffness is found after the beginning of plastic slipping it seems to
be natural to reduce the proposed multi-clement approach to a one material element
formulation with sophisticated strain hardening characteristics. Due to the fact that a
stationary and rate-independent hysteresis is reported for a quasi-static cyclic experiment
(see Fig. 9(b)), isotropic hardening is not suitable to take the reduced stationary stiffness
beyond plastic yielding into account. Stein ef al. (1992), (1993) pointed out that an equiva-
lence of a nonlinear kinematic hardening approach with the proposed overlaying of a
discrete number of ideal-plastic elements can be shown. In their publications the transition
is given for the geometrically linear formulation. Consequently, it could be suggested to
reduce the superposition of M elements to one complex material element with hardening
behaviour, but deficiencies are encountered for the single-element case. An extension of the
shown class of finite elastoplasticity to nonlinear kinematic hardening has not yet been
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Fig. 3. Generalized Prandtl-model in the principal stress space.
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Fig. 5. Cyclic compression test ((a) analytical result, (b) experiment).
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Fig. 6. Cyclic extension-compression test ({(a) analytical result, (b) experiment).
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Fig. 8. Amplitude-dependent damping.

published in detail as far as the authors are aware. A certain amount of theoretical work
would be necessary to derive the extended approach in order to obtain similar results
computed by the superposition model which is already available. Nevertheless, a number
of material parameters are required in both cases to formulate a nonlinear hardening
function. While the numerical characteristics of the one element to be derived are not

known yet, numerical experiments proved stability and quadratic convergence rate of the
formulation employed in this paper.
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Fig. 9. Cyclic extension test, © = 1 mm/min ((a) i-9 interval, (b) 6-9 interval).

The reason for energy losses in elastomeric material is twofold. One origin is the
viscoelastic frequency-dependent behaviour which is well known and usually introduced
by a generalized Maxwell-element. The second contribution, recently recognized and
addressed in this paper, comes from the filler-rubber network interaction. Subjecting a
rubber sample to a time-dependent deformation the response is surely influenced by both
phenomena. In order to take rate-dependent and rate-independent effects simultaneously
into account the proposed model is easily extended by Maxwell-elements in parallel. For a
slow, i.e. quasi-static deformation, the viscoelastic behaviour is not of great importance
and the observed material response exhibits elastoplastic features.

3.1. Linear elastoplasticity

In the following section, fundamentals of isothermal linear elastoplasticity are briefly
summarized. A detailed description can be found e.g. in Simo and Taylor (1985) and Simo
and Hughes (1988). The geometrically linear formulation is meant as a motivation and an
illustration of principle structures for the extension to finite strains.

Since an elastic spring and a plastic slider are arranged in series to yield a simple
elastoplastic Prandtl-element, total infinitesimal strains are composed additively

g=zg+¢& (1

of elastic £° and irreversible plastic contributions ¢”. Different behaviour with respect to a
volumetric or an isochoric deformation is observed in a lot of materials. Therefore, an
additive split of the strain tensor

¢=:L1+deve (2

is accomplished and the inelastic deformation is related only to the volume-preserving part
of the deformation deve. The volumetric deformation is based on the first invariant 7, of
the strain tensor &.

The strain energy function ¥ and the yield function ® in combination with the principle
of positive dissipation for the isothermal case

2" =0:2—¥=0 (3)

and the principle of maximum dissipation form the constitutive basis of the plasticity model.
The elastic region
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Fo := {6 € R®|®(s) < 0} 4)

is defined in the stress space. Based on these fundamentals a standard formulation of
plasticity is developed. In the following approach an associated flow rule

=12 5)
£ = Jo
is used in combination with a yield criterion
®(o) = Flo)—/30, <0 (6)

for ideal plasticity. The parameter g, stands fpr the yield limit. The function F(a) is readily
computed in case of von Mises plasticity F(6) = |deve|| which is employed here. The
conditions of loading--unloading

d6) <0, 120, iD6)=0 (7)

are obtained as a result of the application of the principle of maximum dissipation. The
gradient

od  OF
e ®)

n=—=- -
doe Oo

is a tensor normal to the yield surface in the stress space.

The numerical implementation of the model is founded on the projection algorithm
proposed by Wilkins (1964). The integration of the constitutive model yields a stable
implicit backward Euler algorithm. Starting from time ¢, when the whole situation of the
material is known, i.e. total strain &" and plastic strain ¢*". We are addressing the present
time interval [¢,, ¢,,,]. The algorithm splits the solution procedure up in an elastic and a
plastic subproblem. The elastic predictor

devels = 2udevelt' where devefll' = dev(e"t! —e) )]
and p is the shear modulus, has to be checked for yielding by evaluating the yield condition
oLl = [devaltll—\/30, >0 (10)

in the simple form of ideal von Mises plasticity. The scaling factor %' is readily computed
from

o =gt develh) | /20, = 0 (11)
which gives the plastic radial-return correction
deve™ ! = "' devols) (12)

of the stress predictor back to the yield surface if yielding occurs, i.e. ®f' > 0. Similarly,
we get the deviatoric elastic strain tensor



2064 M. Kaliske and H. Rothert

+1
dev gty

devet! = develf! — AT ——— o (13)
HdCV o.:lnul “
where
nf 1
AV = 2” . (14)
u

The elastic part of the deformation is stored in a data base to provide the material’s history
for the next time step.

As shown in Fig. 2 we arrange a finite number of elastoplastic Prandtl-elements in
parallel analogously to the generalized viscoelastic Maxwell-model. As a result of the
rheological model the stresses have an additive structure

M

6 =0, +deva,+ Y §,deve; (15)
1

where 9, indicates the portion of the separate contributions to the total stiffness. In the
space of principal stresses this model is represented by a number of concentric yield surfaces
(Fig. 3). For each yield condition (i)(a)/ a radial-return projection is accomplished in case
of activating all sliders. The Prandtl-clements superimpose material friction with different
plastic characteristics o,; on the elastic response deva,. It is an interesting fact that we
describe some kind of kinematic hardening with the proposed model. Even when all sliders
with ideal-plastic characteristics are activated, a reduced stiflness will remain because of
the single elastic spring in parallel to the Prandtl-elements. But in contrast to “real’” work
hardening the yield stresses ¢, , are not modified by the deformation. The resulting hysteresis
is stationary in a cyclic test with a constant strain amplitude.

This formulation can be linearized in closed form and yields the tangent operator of
the Newton-procedure

Ja
C7 = —m
B O81ia)
M 2
= q::‘v"ul + Ql“so + Z 5_1‘ |:ﬁ @f;o - ﬂﬂ*——_’ deV G irial ® de‘/ dlrlul:' ( 16)
Jj=1 ” dev Orial ” B j

which ensures the quadratic rate of convergence of the iterative process when solving the
nonlinear system of equations of the finite element discretization. Simo and Taylor (1985)
point out the importance of the consistent linearization of the stress integration algorithm.

3.2. Finite elastoplasticity

The constitutive approach introduced in the preceding subsection is extended to finite
strains in order to serve as a constitutive model for numerical simulations of rubber
structures. The proposed formulation is suitable for moderate elastic and moderate plastic
strains, i.c. the strain is restricted to approximately 50%, which is sufficient for a large
number of technical applications. Among others Weber and Anand (1990), Eterovic and
Bathe (1990) and Simo (1992) recently contributed to the field of multiplicative elas-
toplasticity. The employed formulation is based on developments of Miche and Stein
(1992).

In contrast to the additive split of the deformation in the linear case (1), the basic
kinematic quantity of the geometrically nonlinear regime—the deformation gradient F—is
decomposed multiplicatively
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F = FF* a7

into an elastic F* and a plastic portion F?. Thus, a so-called plastic intermediate configuration
is defined which goes back to Lee (1969). The following ideal-plastic and isothermal model
is derived with respect to the current configuration, and, as a consequence, is restricted to
isotropic material.

The constitutive mode! shown is of the same structure as the small strain approach.
The strain energy function W, the yield function @ and the evaluation of the two dissipation
principles mentioned lead to the final formulation. The principal of positive dissipation

77 =1:1-¥>0 (18)

where 1 := FF ~' is the spatial velocity gradient, yields the constitutive hyper-elastic equation
for the Kirchhoff stress tensor

t=2—b (19)

using the left Caughy—Green tensor b and a reduced dissipation inequality. The hyper-
surface defined by ®(z)

E.:= {re R®|D(r) < 0} (20)

separates the elastic and the plastic region in the stress space. Equivalent to eqn (5) the
associated flow rule is obtained as

N I 21
2 v ) - at ( )

using the Lie-derivative .Z.(b°) of the left Cauchy-Green tensor b‘. The conditions for
loading and unloading

O(r) <0, 220, iB(r)=0 (22)

are determined through the principle of maximum dissipation. From the yield criterion for
finite ideal von Mises plasticity

B(r) = A1) -0, <0 (23)
where F(z) = ||dev e |. results the tensor

ob  OF
n=-—-- == (24)

ot Ot

normal to the hyper-surface ®(r) which is the boundary of the elastic region,

As mentioned above, the constitutive basis of the material formulation is the distinction
between volumetric and isochoric parts of the deformation which results in a splitted strain
energy function

Y = U(J))+ W(b) (25)

\_:vhere J = det F and b = FF’, using the volume-preserving part of the deformation gradient
F = J~"“»F_This way the kinematic quantity is decomposed multiplicatively
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F =(J'P1)FF (26)
analogously to the additive split of linear strains [eqn (2)]. It turned out that it is advan-

tageous for the algorithmic formulation of the model to use the logarithmic strain energy
function

W= ghﬁ b @7

where p is an elastic material parameter. The computation of isotropic tensor-valued tensor
functions is based on a spectral decomposition of the quantities (see e.g. Miehe, 1993).

The accompanying elastoplastic algorithm has the same structure as for linear ela-
stoplasticity and, therefore, it is very efficient. The elastic predictor

devtii! = ulnbi; (28)
is computed by using the elastic predictor of the deformation
Bt =B () (R (29)

The intermediate plastic configuration of the last converged step is taken into consideration
state by (C"?)~". The elastic trial eqn (28) is followed by a plastic correction according to
the standard radial-return method. The von Mises yield criterion for ideal plasticity

O = dev il | - /o, (30)
is utilized in here and the projection of the Kirchhoff stress tensor to the yield surface
devt't! = g+t devels) 3D
is accomplished analytically in case of @,/ > 0 by evaluating "*' from
o = g deverit | —y/2a, = 0. (32)
The current plastic intermediate configuration
(€)= =(F* 1) Lexp(Bt Inbigt YR )T (33)

forms the basis for the next load step.

Using the multiplicative elastoplastic approach shown above, a generalized Prandtl-
element suitable for finite strains is introduced. The model is formulated on the constitutive
level and has an additive structure for the Kirchhoff stresses

M
T=r1,,+devr,+ Y, §;devr; (34)
i=1

J

analogously to linear strains because of the material elements in parallel. The contribution
of each Prandtl-element to the total stiffness is indicated by scalar factors 8, The radial-
return projection of the stresses dev ., as well as the update of the intermediate con-
figuration (C?); ' is carried out for each element if plastic yielding occurs. The linearization
of the integration procedure is derived analytically to give the algorithmic tangent modulus
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2up

m dev 1, ® dev Tman:| (35)
trial

]

M
c= 2501 +£l250 + Z 51’ l:ﬁg:;o "'
=1

J

in the current configuration (see also Miche and Stein, 1992) which can be employed in
finite element computations.

4. PARAMETER IDENTIFICATION

The main goal of this article is the introduction of a constitutive strategy to predict
the mechanical behaviour of a class of elastomers which have filler improved features. On
the one hand details about the rubber blends cannot be published because the recipes of
these mixtures are confidential. On the other hand we are looking at mechanical charac-
teristics and their phenomenological modelling. Therefore, the chemical composition of the
rubber material investigated is of secondary importance.

The constitutive approach is a combination of discrete material elements. The con-
tribution of each element §, to the total stiffness has to be determined. Apart from this
scalar quantity further material parameters are introduced by the two basic constitutive
functions. The strain energy function ¥ and the yield function @ define the elastic and the
plastic model used. In principle, any elastic approach is suitable. Nevertheless, the simple
logarithmic potential function (27) with the elastic quantity 4 is sufficient for a large number
of cases. The ideal-plastic von Mises yield function ® comprises the yield limit o, which
stands for the activation of the ideal-plastic sliders. In summary, one elastic modulus y and
pairs of (8;,0,,) for each Prandtl-element j have to be determined. The physical behaviour
of polymer chains is not directly formulated by the presented model because of its phenom-
enological character. Thus, a physical interpretation of the material parameters is not
meaningful.

The number of elements and material parameters, respectively, required for a realistic
simulation, depends on the strain range and the shape of the hysteresis to be represented.
This corresponds to the generalized viscoelastic Maxwell-element which has to be composed
of a particular number of elements in order to reproduce a certain frequency range.

We use a set of uniaxial extension, compression and combined extension-compression
tests as starting point for the parameter identification process. The stationary part of these
quasi-static cyclic experiments is considered. The advantage of the mentioned type of
investigations is the fact that they can be described by an analytical formulation of the
material model when incompressibility is assumed (J = detF = 1). Therefore, stochastic
methods like evolution strategies are advantageous algorithms for the parameter identi-
fication. Core of this approach is the formulation of an optimization problem which is
iteratively solved using genetic algorithms. It minimizes the error between experimental
data and analytical expression.

The result of an identification procedure is given by Table 1 and Figs 4-6. The set of
parameters (Table 1) computed iteratively via a simple evolution process is valid for the
three different experiments depicted by Figs 4(b)-6(b). These cyclic tests were taken into
consideration for the parameter determination and they are compared with the analytical
results (Figs 4(a)-6(a)) utilizing these material data. An improved agreement between tests
and analytical simulation can be expected when the identification algorithm is developed
further. Taking more experiments into account, €.g. shear tests, is feasible and enlarges the
validity range of the parameters.

Table 1. Material data (modulus u = 1.500 N/mm?)

J 1 2 3 4 5 6 7

5[ 2.816™! 1.800~" 1.150-° 7.100~" 36167 2.107-! 577372
o, [N/mm? 684777 1.004 197573 5.668~7 1934 27317 1.513
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5. NUMERICAL EXAMPLES

Numerical simulations presented below illustrate the principal characteristics of the
model. Furthermore, a comparison with experimental work points out the capabilities of
the formulation.

Example 5.1.

A certain material behaviour is approximated by a generalized Prandtl-element con-
sisting of six elastoplastic elements for the small strain case. A cantilever beam is investigated
in a free-vibration test (Fig. 7). The diagram showing the tip-defiection curve as a function
of time exhibits large damping at the beginning. The dissipation is reduced during the
course of vibration. Amplitude-dependence of the material can already be seen from this
result.

When the loss factor y = tand is evaluated as a function of the strain, amplitude-
dependency of damping becomes apparent. The angle ¢ indicates the phase-shift between
a harmonic stress-function and the accompanying strain-function which is found because
of inelastic material characteristics. Therefore, it is a quantitative measure for dissipation.
The shift-factor can be determined by employing Fourier’s analysis to the time-dependent
stress- and strain-function of a selected point in a path-controlled simulation. Figure 8
clearly depicts the nonlinear relation between damping and strain amplitude observed
already in Fig. 7. Here, a harmonic path controlled deformation at different amplitudes &°
is investigated. From the diagram the increase of dissipation due to a rise of the amplitude
¢ is seen.

Example 5.2.

A cylindrical rubber-specimen (length = 50 mm, diameter = 20 mm) is investigated in
cyclic extension and compression tests. A path-controlied deformation is applied at the
velocity of v = 1 mm/min and v = 50 mm/min. The underlying constitutive model used in
the numerical simulation of this experiment is composed of seven Prandtl-elements and an
elastic spring in parallel.

Half of the specimen is discretized by 60 Q2/Pl-elements (according to Simo and
Taylor, 1991), making partial use of the symmetries. These mixed elements account for
almost complete incompressibility of rubber material. Figure 10 depicts the finite element
simulation at maximum extension (4 50%), maximum compression (—20%) and the
undeformed reference state.

For the experimental investigation, the cylindrical rubber specimen wus subjected to
nine load intervals at different strain amplitudes (Fig. 9). Loading and unloading went
through each interval ten times. The deformation was increased in steps of 10% up to the
maximum of 50% extension at the fifth interval, and then it was reduced again. The graph
of the whole experimental load displacement history does not give a clear impression (1-9
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Fig. 11. Cyclic extension test ({(a) FE-computation, (b) experiment).

interval). But looking at the intervals when reducing the load amplitudes, all ten cycles for
a particular strain amplitude coincide (6-9 interval). In the second part of the experiment,
damage phenomena like the Mullins-effect are reduced and we can take this part of the
investigation for a comparison. The compression test was carried out equivalently. The
specimen was subjected to the total deformation in steps of —4% up to the maximum
compression —20% in the fifth interval. Then the compression was reduced again. Par-
ameter identification, described in Section 4, is based on this type of experiments.

Both experiments are simulated numerically by finite element computations (Fig. 10).
Numerical and experimental results are compared (Figs 11 and 12) for the stationary part
of the test (6-9 interval). The plots depict the uniaxial force as a function of the strain. The
experimental hysteresis loops are quantitatively well approximated by the computations.
Even the shape of the hysteresis is reproduced in principal. The reason for the slight
discrepancies of numerical result and experiment is the simple logarithmic strain energy
function. If more elaborate elastic models are employed, e.g. Ogden’s (1982) approach.
improved results with respect to the shape of the hysteresis can be expected.

For the computations shown the modulus of the purely elastic spring was set to
p = 1.336 N/mm’. We identified the elastoplastic material parameters only on the basis of
the extension test (see Table 2). Afterwards. we carried out the compression test and found
out that the chosen set of material data is also appropriate for this loading. Comparing the
finite element and the experimental results we can conclude that the hypothesis of rate-
independent inelastic behaviour for filled rubber material is confirmed. The influence of the
strain-rate is not significant in the present case and we can model this phenomenon by a
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0 ~ 0F —
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Fig. 12. Cyclic compression test ((a) FE-computation. (b) experiment).



2070 M. Kaliske and H. Rothert
Table 2. Material data (modulus x = 3.34 N/mm?, Poisson’s ratio v = 0.497)

j 1 2 3 4 5 6 7
o, [ 4 0.04 0.06 0.06 0.08 0.10 0.20 0.30
., [N/mm?] 2.0 1.5 1.0 0.8 0.6 0.2 0.1

generalized elasto-plastic formulation quite well. The static hysteresis of rubber material is
simulated realistically at finite strains by the generalized Prandtl-element.

6. CONCLUSIONS

Rate-independent material properties of filled rubber, which are interpreted as plastic
slip on the micromechanical level, were experimentally observed. In order to simulate the
behaviour of elastomeric structures realistically, an elastoplastic generalized model suitable
for small and finite strains was proposed. Finite element computations prove that the model
is suitable for use in large scale static and dynamic simulations. Good agreement was
obtained for the static hysteresis and even for a quantitative comparison. The results shown
look promising. An extension to improved elastic formulations combined with plasticity
would round off the mechanical model, but results should not in principal differ from the
shown data. Consequently, the proposed model may serve as a component of a complex
material formulation which also incorporates viscoelastic properties to yield a realistic
approach to filled rubberlike material.
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